
Addressing the System
Steven R. Bagley

Introduction
• Looked at what is inside a computer

• Digital Logic

• ARM Assembly

• Today we come full circle…

• How do we put all the bits together to build a full
computer?

Or…

How do you build
computer-controlled

Christmas tree lights?

Tree Lights
• Wanted to build a set of Raspberry PI controlled

Christmas tree lights…

• Easily done, just need to write to address
0x20200000

• Can easily write C code to do this

• Must declare the pointer as volatile

volatile tells it that the contents can change/be read outside of the C program

Addressing

• How does the RPi know that 0x20200000 is the
GPIO pins, and not RAM?

• How does any computer know which addresses
map to RAM, ROM or I/O?

• Down to our old friend digital logic…

6502

• Going to consider things in terms of the 6502
CPU, but equally applicable to others

• 8-bit data bus

• 16-bit address bus

• Gives a 64K address space

Although modern CPUs use very different ways of talking to the outside world

SoCs (such as the RPi) tend to do this all internally

Address Space
• When designing the system up we divide this

address space up as we please between:

• RAM

• ROM

• I/O

• Don’t necessarily have to use all of it…

Address Space

• Can effectively partition it as we want

• Often done to make it easy to decode

• Using as little logic as possible

• Also peculiarities of CPU might have an effect

Cost, gate delay

CPU requires certain addresses to contain certain things

0x0000

0xFFFF

BBC Micro memory space…

6502 has very quick access to RAM at 0x0000-0x00FF and expects stack at 0x0100-0x01ff so will put 32K RAM at 0x0000-0x7fff

8K OS ROM to end at 0xFFFF so that reset vector at 0xFFFC is taken care of

User ROM in the gap

RAM

0x0000

0xFFFF

0x8000

BBC Micro memory space…

6502 has very quick access to RAM at 0x0000-0x00FF and expects stack at 0x0100-0x01ff so will put 32K RAM at 0x0000-0x7fff

8K OS ROM to end at 0xFFFF so that reset vector at 0xFFFC is taken care of

User ROM in the gap

OS ROM

RAM

0x0000

0xFFFF

0x8000

0xC000

BBC Micro memory space…

6502 has very quick access to RAM at 0x0000-0x00FF and expects stack at 0x0100-0x01ff so will put 32K RAM at 0x0000-0x7fff

8K OS ROM to end at 0xFFFF so that reset vector at 0xFFFC is taken care of

User ROM in the gap

OS ROM

User ROM

RAM

0x0000

0xFFFF

0x8000

0xC000

BBC Micro memory space…

6502 has very quick access to RAM at 0x0000-0x00FF and expects stack at 0x0100-0x01ff so will put 32K RAM at 0x0000-0x7fff

8K OS ROM to end at 0xFFFF so that reset vector at 0xFFFC is taken care of

User ROM in the gap

Alignment
• ROM, RAM chips all have a series address lines

• So it makes sense to ensure things are aligned to
powers of 2 address

• Means we can just connect the common address lines
straight to the chip

• No need to add offsets or anything…

• Means we only have to consider a subset of address
lines to decode which chip

Chips

Chip Select

• How do we connect everything up?

• How do we make the CPU talk to the right chip
at the right time?

Address Bus

Data Bus

Chip Select
• Each chip has a chip select pin (CS) which selects

whether the chip is talking to the data bus or not

• When it’s not talking it is in a high-impedance
state

• Effectively equivalent to if it wasn’t present

• By driving the CS line with logic we can select the
right chip

Chip Select
• For each chip, we need to generate a logic

signal based on the address bus

• That is true, only if the address is in the right
range

• Need to consider the binary value of the
addresses and create logic equations based on
them

Demo on paper

OS ROM

User ROM

RAM

0x0000

0xFFFF

0x8000

0xC000

OS ROM

User ROM

RAM

0x0000

0xFFFF

0x8000

0xC000

What about IO?

RAM

OS ROM

User ROM

0x0000

0xFFFF

0x8000

0xC000

OS ROM

0xFFFF

0xC000

OS ROM

0xC000

0xFFFF

0xC000

Treated in the same way — decode the relevant addresses and feed to the relevant chips

OS ROM

0xC000

0xFFFF
0xFC00

Treated in the same way — decode the relevant addresses and feed to the relevant chips

Address Space

• Don’t need to fill the address space — can have
unused gaps

• Also don’t have to completely decode the
addresses

• Only have to uniquely decode each part…

Shadows

• Leads to shadows or mirrors of RAM/ROM in the
address space

• This is fine but as a programmer it’s not a good
idea to use them

• Later hardware revisions may change the
decoding (so your program would stop working)

Simple Logic
• Want to build the simplest, cheapest logic

• Using the least number of gates

• Reduces cost

• Reduces gate delay

• Optimize using boolean algebra rules

• Only decode as much as you have to

Cartridge ROM

RAM

VIDEO I/O
0x0000

0xFFFF

0x2000

0xF000

0x002C

0x0100
0x01FF

I/O 0x2012

