
Writing ARM Assembly
Steven R. Bagley

Introduction

• Previously, looked at how the system is built out
of simple logic gates

• Last week, started to look at the CPU

• Writing code in ARM assembly language

Assembly Language
• CPUs consume instructions encoded in binary 
1110 0000 1000 0000 0000 0000 0000 0001

• This means add together R0 and R1 and store
the result in R0

• Not very programmer friendly

• Not even if we view them in hex…

ARM encodes them in a fixed 32-bit word
Bit patterns not random controls the logic circuits in the CPU to perform the right operations
You don’t want to be so familiar you get jokes in the Star Trek episode titles…

Assembly Language
• CPUs consume instructions encoded in binary 
0xE0800001

• This means add together R0 and R1 and store
the result in R0

• Not very programmer friendly

• Not even if we view them in hex…

ARM encodes them in a fixed 32-bit word

Assembly Language
• Programmers don’t like binary machine code

• Computers don’t understand English…

• Assembly Language is a compromise

• Gives English-like mnemonics for instructions 
ADD R0, R0, R1

• Saves us memorising the bit patterns

Assembler
• Software that converts the mnemonics to binary

• Generates the correct bit patterns for each instruction

• But can also work out address offsets etc.

• And other conveniences…

• We are using aasm as our assembler

• Simpler programs than compilers

But will usually access it from within Komodo
So often have stricter input…

Assembly Syntax
• Assemblers tend to have more fixed syntax

• Although often simpler

• No functions

• Just instructions, or data

• Varies from assembler to assembler although
often very similar, this is describes aasm

Assembly Syntax
B main

four DEFW 4
success DEFB "R0 has reached the value of \0"

ALIGN

main LDR R1, four
MOV R0, #1

next CMP R0, R1
BNE skip
ADR R0, success
SWI 3
MOV R0,R1
SWI 4
MOV R0, #10
SWI 0
SWI 2

skip ADD R0, R0, #1
B next

Mnemonics — symbol for the instruction (e.g. ADD, LDR, MOV etc) only ever one
Operands — what that instructions operates on (can be a variable number)
Although not enforced in aasm, they tend to be ‘tabbed’ in from the left hand column (using tabs or spaces) to allow room for the labels on the left.

Assembly Syntax
B main

four DEFW 4
success DEFB "R0 has reached the value of \0"

ALIGN

main LDR R1, four
MOV R0, #1

next CMP R0, R1
BNE skip
ADR R0, success
SWI 3
MOV R0,R1
SWI 4
MOV R0, #10
SWI 0
SWI 2

skip ADD R0, R0, #1
B next

mnemonics and  
operands

Mnemonics — symbol for the instruction (e.g. ADD, LDR, MOV etc) only ever one
Operands — what that instructions operates on (can be a variable number)
Although not enforced in aasm, they tend to be ‘tabbed’ in from the left hand column (using tabs or spaces) to allow room for the labels on the left.

Assembly Syntax
B main

four DEFW 4
success DEFB "R0 has reached the value of \0"

ALIGN

main LDR R1, four
MOV R0, #1

next CMP R0, R1
BNE skip
ADR R0, success
SWI 3
MOV R0,R1
SWI 4
MOV R0, #10
SWI 0
SWI 2

skip ADD R0, R0, #1
B next

Mnemonics — symbol for the instruction (e.g. ADD, LDR, MOV etc) only ever one
Operands — what that instructions operates on (can be a variable number)
Although not enforced in aasm, they tend to be ‘tabbed’ in from the left hand column (using tabs or spaces) to allow room for the labels on the left.

Assembly Syntax
B main

four DEFW 4
success DEFB "R0 has reached the value of \0"

ALIGN

main LDR R1, four
MOV R0, #1

next CMP R0, R1
BNE skip
ADR R0, success
SWI 3
MOV R0,R1
SWI 4
MOV R0, #10
SWI 0
SWI 2

skip ADD R0, R0, #1
B next

Labels just label things (instructions or data)
Can then be referred to elsewhere in the program by using the label name
Assembler automatically calculates the address and inserts it in the generated program (or calculates offsets when used with branches)
No need to declare them, assembler will make two-passes to work out where things are (a non-trivial process)
Must be the first thing on a line starting in the leftmost column

Assembly Syntax
B main

four DEFW 4
success DEFB "R0 has reached the value of \0"

ALIGN

main LDR R1, four
MOV R0, #1

next CMP R0, R1
BNE skip
ADR R0, success
SWI 3
MOV R0,R1
SWI 4
MOV R0, #10
SWI 0
SWI 2

skip ADD R0, R0, #1
B next

labels

Labels just label things (instructions or data)
Can then be referred to elsewhere in the program by using the label name
Assembler automatically calculates the address and inserts it in the generated program (or calculates offsets when used with branches)
No need to declare them, assembler will make two-passes to work out where things are (a non-trivial process)
Must be the first thing on a line starting in the leftmost column

Assembly Syntax
B main

four DEFW 4
success DEFB "R0 has reached the value of \0"

ALIGN

main LDR R1, four
MOV R0, #1

next CMP R0, R1
BNE skip
ADR R0, success
SWI 3
MOV R0,R1
SWI 4
MOV R0, #10
SWI 0
SWI 2

skip ADD R0, R0, #1
B next

Labels just label things (instructions or data)
Can then be referred to elsewhere in the program by using the label name
Assembler automatically calculates the address and inserts it in the generated program (or calculates offsets when used with branches)
No need to declare them, assembler will make two-passes to work out where things are (a non-trivial process)
Must be the first thing on a line starting in the leftmost column

Assembly Syntax
B main

four DEFW 4
success DEFB "R0 has reached the value of \0"

ALIGN

main LDR R1, four
MOV R0, #1

next CMP R0, R1
BNE skip
ADR R0, success
SWI 3
MOV R0,R1
SWI 4
MOV R0, #10
SWI 0
SWI 2

skip ADD R0, R0, #1
B next

Directives ‘direct’ the assembler to do things while generating code (e.g. ALIGN makes sure things align on a 4-byte boundary) — similar to #include/#define in C
Some do generate data into the code (e.g. DEFW)

Assembly Syntax
B main

four DEFW 4
success DEFB "R0 has reached the value of \0"

ALIGN

main LDR R1, four
MOV R0, #1

next CMP R0, R1
BNE skip
ADR R0, success
SWI 3
MOV R0,R1
SWI 4
MOV R0, #10
SWI 0
SWI 2

skip ADD R0, R0, #1
B next

directives

Directives ‘direct’ the assembler to do things while generating code (e.g. ALIGN makes sure things align on a 4-byte boundary) — similar to #include/#define in C
Some do generate data into the code (e.g. DEFW)

Assembly Syntax
B main

four DEFW 4
success DEFB "R0 has reached the value of \0"

ALIGN

main LDR R1, four
MOV R0, #1

next CMP R0, R1
BNE skip
ADR R0, success
SWI 3
MOV R0,R1
SWI 4
MOV R0, #10
SWI 0
SWI 2

skip ADD R0, R0, #1
B next

Directives ‘direct’ the assembler to do things while generating code (e.g. ALIGN makes sure things align on a 4-byte boundary) — similar to #include/#define in C
Some do generate data into the code (e.g. DEFW)

Assembly Directives

• Some useful directives:

• DEFW, DEFB — define a word or byte respectively 
Causes the specified values to be inserted into
the generated bitstream

• Used here to store a string (but note we need
to specify the NULL-character ourselves)

Unlike in C…

Assembly Directives
• Some useful directives:

• ALIGN — align to a 4-byte boundary

• ORIGIN — set address code is generated from

• EQU — equate a name with something 
fred EQU 42  
This would mean we can use fred to mean 42
in our code

Equates are replaced at assembly time — like #defines are in C
Makes the code much more readable

Assembly Comments

• Can also add comments to our assembly

• A ‘;’ delimits the start and runs until end of line,
e.g. 
MOV R0, #65 ; moves 65 into R0

• Probably more need for comments in assembly
than C because the code is more cryptic

Hello World
B main

hello DEFB “Hello World\n\0”
goodbye DEFB “Goodbye Universe\n\0”

ALIGN

main ADR R0, hello ; put address of hello string in R0
SWI 3 ; print it out
ADR R0, goodbye ; put address of goodbye string in R0
SWI 3
SWI 2 ; stop

Hello World program ARM style
Lets work through this bit by bit…
Branch to main, nothing special about the label could be anything

Hello World
B fred

hello DEFB “Hello World\n\0”
goodbye DEFB “Goodbye Universe\n\0”

ALIGN

fred ADR R0, hello ; put address of hello string in R0
SWI 3 ; print it out
ADR R0, goodbye ; put address of goodbye string in R0
SWI 3
SWI 2 ; stop

even fred — it’s just a label…

Branch Instruction
• Mnemonic: B

• Causes execution to branch, or jump to a new
location in memory

• Changes the PC register

• Takes one operand a 24-bit signed offset to the new
location from this instruction

• Assembler calculates this offset for us automatically

Remember, PC is R15 on ARM
Offset multiplied by four (remember, each instruction is 4 bytes wide) and added to the PC (note the PC is always 8 bytes, 2 instructions, ahead of the one
that is being executed)

Hello World
B main

hello DEFB “Hello World\n\0”
goodbye DEFB “Goodbye Universe\n\0”

ALIGN

main ADR R0, hello ; put address of hello string in R0
SWI 3 ; print it out
ADR R0, goodbye ; put address of goodbye string in R0
SWI 3
SWI 2 ; stop

even fred — it’s just a label…

Hello World
0xEA000007

hello DEFB “Hello World\n\0”
goodbye DEFB “Goodbye Universe\n\0”

ALIGN

main ADR R0, hello ; put address of hello string in R0
SWI 3 ; print it out
ADR R0, goodbye ; put address of goodbye string in R0
SWI 3
SWI 2 ; stop

even fred — it’s just a label…

Hello World
B main

hello DEFB “Hello World\n\0”
goodbye DEFB “Goodbye Universe\n\0”

ALIGN

main ADR R0, hello ; put address of hello string in R0
SWI 3 ; print it out
ADR R0, goodbye ; put address of goodbye string in R0
SWI 3
SWI 2 ; stop

DEFB just defines the sequence of bytes for Hello world etc in the bitstream
ALIGN makes sure we are rounded to 4 bytes

ADR instruction
• Mnemonic: ADR

• Puts the address of a label in a register

• Two operands: register, and address

• This is not an instruction, but a convenience of
the assembler

• Replaced by an addition/subtraction instruction
based on the PC

Sometimes more than one instruction

Hello World
B main

hello DEFB “Hello World\n\0”
goodbye DEFB “Goodbye Universe\n\0”

ALIGN

main ADR R0, hello ; put address of hello string in R0
SWI 3 ; print it out
ADR R0, goodbye ; put address of goodbye string in R0
SWI 3
SWI 2 ; stop

Software Interrupt
• Mnemonic: SWI, SVC

• Operand: 24-bit SWI number

• Generate a software interrupt…

• Causes the CPU to start executing from 0x8

• Operand value used to decide what to do

• Trapped by the OS…

Has two opcodes because now referred to as a Service Call rather than a Software interrupt

Software Interrupt

• We don’t have an OS…

• But Komodo traps the SWIs for us

• Provides some useful I/O routines for us

Komodo-provided SWIs
SWI Number Description

0 Outputs the character in the least significant byte
of R0 to the terminal window

1 Inputs the character typed into terminal window
into the least significant byte of R0

2 Halts execution

3 Prints the string pointed to by R0

4 Print the integer value in R0

Note SWI 4 doesn’t understand negative numbers!
No others are implemented

Hello World
B main

hello DEFB “Hello World\n\0”
goodbye DEFB “Goodbye Universe\n\0”

ALIGN

main ADR R0, hello ; put address of hello string in R0
SWI 3 ; print it out
ADR R0, goodbye ; put address of goodbye string in R0
SWI 3
SWI 2 ; stop

Can now understand what this program does

