
Boolean Logic
Steven R. Bagley

Introduction

• Last week, looked inside a computer…

• Saw how information is represented in binary as
digital signals

• Understand how to manipulate those signals

• To do useful things…

Logic Gates

AND ORNOT

Logic Gates
AND ORNOT

A Result

0 1

1 0

Logic Gates
AND ORNOT

A B Result

0 0 0

0 1 0

1 0 0

1 1 1

Logic Gates
AND ORNOT

A B Result

0 0 0

0 1 1

1 0 1

1 1 1

Logic Functions
• Every boolean function can be expressed using

the And, Or and Not functions

• This is called it’s canonical representation

• And, Or and Not have their own symbols that
can be used to write down logic equations

• Similar to how we write down mathematical
equations

Unfortunately there are lots of symbols used…

Logic Equations
• Often need to write logic equations down

• Different disciplines use different operators

• AND — A∧B, A&B, A•B

• OR — A∨B, A|B, A+B

• NOT — ¬A, ~A, A

Symbols in order, Maths, Programning languages (specifically, C), electronics?
Bar can be extend over other things to show what’s inverted
Not C also uses ! in some cases to mean inversion

Precedence
• Operators have precedence

• NOT binds most tightly

• Then AND

• Finally OR

• So A+B•C is equivalent to A+(B•C)

Two input functions
Table 1

Function A 0 0 1 1

B 0 1 0 1

Constant Zero 0 0 0 0 0

And A•B 0 0 0 1

A And Not B A•B 0 0 1 0

A A 0 0 1 1

Not A And B A•B 0 1 0 0

B B 0 1 0 1

Xor A•B + A•B 0 1 1 0

Or A+B 0 1 1 1

Nor A+B 1 0 0 0

Equivalence A•B + A•B 1 0 0 1

Not B B 1 0 1 0

If B then A A+B 1 0 1 1

Not A A 1 1 0 0

If X then Y A+B 1 1 0 1

Nand A•B 1 1 1 0

Constant One 1 1 1 1 1

Logic Gates
• An electronic circuit representing a logic

function is called a gate

• So with electronic circuits that represents And,
Or and Not

• We can combine them to build any logic function
as a circuit

• To process the signals in the computer

Show YouTUBE clip

Boolean Algebra
• There are a set of algebraic rules for logic

functions

• Set out by George Boole in ‘A Calculus of Logic’

• Allows us to reason about logic functions and
simplify them…

• Can also use them to show that we can build
every logic function if we are given NAND

Boole, 1815-1864

Boolean Algebra

• Already seen how we can build all two-input
functions from And, Or and Not

• So if we can build those three functions using
NAND then we can build all the functions

Boolean Definitions
• First, set define the action of functions

0+0 = 0
0+1 = 1
1+0 = 1
1+1 = 1

0•0 = 0
0•1 = 0
1•0 = 0
1•1 = 1

Equivalent to the truth table

Boolean Definitions
• Second, functions for which one input is a

variable

A+0 = A
A+1 = 1
A+A = A
A+A = 1

A•0 = 0
A•1 = A
A•A = A
A•A = 0

A = A

Go through them

Last one is NOT of NOT A

Boolean Definitions
• Third, for more than one variable

A+B = B+A
(A+B)+C = A+(B+C)
(A•B)+(A•C) = A•(B+C)

A•B = B•A
(A•B)•C = A•(B•C)
(A+B)•(A+C) = A+(B•C)

Go through them

Boolean Definitions
• Fourth, De Morgan’s Theorem

A•B = A+B A+B = A•B

Go through them
These rules are what lets us build everything out of NAND gates
Show truth tables on board for these

Logic Gates
• Given a set of NAND gates, we can design any

logic circuit we want

• Can get programmable logic chips that are just
arrays of NAND gates

• Easier to design using And, Or and Not gates

• As it’s canonical representation

• And let the computer convert into NAND gates

Hardware Description
Language

• Describe the circuit using a Hardware Description
Language

• Write the hardware as if it were a computer
program using a language

• Express how the various AND, OR and NOT gates
connect

• Software then generates necessary NAND gates
for a Programmable Logic Device

Hardware Descripton
Language

• Lots of HDLs about, two common ones are:

• Verilog

• VHDL

• We are going to use one that is part of
NAND2TETRIS

• This comes with a simulator we can use to
experiment

Go demo it…

Designing Logic Circuits
• Often helpful to start by building up the truth

table

• Then work out the equations for each output for
each line based on the input

• OR each of these together for each output

• Then simplify the equations

Simplifying
• Use the algebraic rules etc…

• Look for common sub-equations and move to a
separate equation

• Aim is to use as few gates as possible

• Saves money

• Reduces propagation delay

Propagation delay is the time taken for a change in the inputs to be reflected in the output of a gate (74LS00 is around 18ns). As gates are combined
together the delays add together

Binary Decoder

• Design a logic circuit than can convert a number
in binary to a series of discrete signals

• One for each number

• Look at 2-bit decoder

• Two inputs, four outputs

Go draw output on paper

Multiplexer
• Design a circuit that can combine two sets of two

inputs (A1,B1 and A2,B2) into a single set of two
outputs (AO,BO)

• Based on two selection wires S1 and S2

• If S1 is 1, then output is A1,B1

• If S2 is 1, then output is A2,B2

• What if both S1 and S2 are 1…

Not necessarily a problem, depends on how the circuit is driven…

