Boolean Logic

Steven R. Bagley

Introduction

Last week, looked inside a computer...

Saw how information is represented in binary as
digital signals

Understand how to manipulate those signals

To do useful things...

Logic Gates

o o IO

Logic Gates
-

Result

A

P
L
S
&
O
®)
®
]

P
L
S
&
O
®)
®
]

Logic Functions

Every boolean function can be expressed using
the And, Or and Not functions

This is called it's canonical representation

And, Or and Not have their own symbols that
can be used to write down logic equations

Similar to how we write down mathematical
equations

Unfortunately there are lots of symbols used...

Logic Equations

Often need to write logic equations down
Different disciplines use different operators
AND — AAB, A&B, Ae*B

OR —AvVB, A|B, A+B

NOT — -A, ~A, A

Symbols in order, Maths, Programning languages (specifically, C), electronics?
Bar can be extend over other things to show what’s inverted
Not C also uses ! in some cases to mean inversion

Precedence

Operators have precedence
NOT binds most tightly
Then AND

Finally OR

So A+BeC is equivalent to A+(BeC)

Two input functions

Function

And
A And Not B AeB
A
Not AAnd B AeB
B
Or
\[o]¢ A+B
Not B

If B then A
Not A

If X then'Y
Nand 1

=

[y

D’ H
II
II

bl

R

o w
II

II

I

1
1
0
1
0]
1
0
1
0
IR) S S
(s [1 o [o [
1
0
1
0
1
0
1

=

Show YouTUBE clip

Logic Gates

An electronic circuit representing a logic
function is called a gate

So with electronic circuits that represents And,
Or and Not

We can combine them to build any logic function
as a circuit

To process the signals in the computer

Boole, 1815-1864

Boolean Algebra

There are a set of algebraic rules for logic
functions

Set out by George Boole in ‘A Calculus of Logic’

Allows us to reason about logic functions and
simplify them...

Can also use them to show that we can build
every logic function if we are given NAND

Boolean Algebra

» Already seen how we can build all two-input
functions from And, Or and Not

e So if we can build those three functions using
NAND then we can build all the functions

Boolean Definitions

* First, set define the action of functions

Equivalent to the truth table

Boolean Definitions

e Second, functions for which one input is a
variable

A+0
A+1
A+A
A+A

Go through them

Last one is NOT of NOT A

Go through them

Boolean Definitions

* Third, for more than one variable

A+B B+A AeB
(A+B)+C A+(B+C) (AeB)eC
(A®B)+(AeC) = Ae(B+C) (A+B)e (A+C)

BeA
Ae (BeC)
A+ (BeC)

Boolean Definitions

e Fourth, De Morgan’s Theorem

Go through them
These rules are what lets us build everything out of NAND gates
Show truth tables on board for these

Logic Gates

Given a set of NAND gates, we can design any
logic circuit we want

Can get programmable logic chips that are just
arrays of NAND gates

Easier to design using And, Or and Not gates
As it's canonical representation

And let the computer convert into NAND gates

Hardware Description
Language

Describe the circuit using a Hardware Description
Language

Write the hardware as if it were a computer
program using a language

Express how the various AND, OR and NOT gates
connect

Software then generates necessary NAND gates
for a Programmable Logic Device

Hardware Descripton
Language
* |ots of HDLs about, two common ones are:

* Verilog

* VHDL

* We are going to use one that is part of
NAND2TETRIS

 This comes with a simulator we can use to
experiment

Go demo it...

Designing Logic Circuits

Often helpful to start by building up the truth
table

Then work out the equations for each output for
each line based on the input

OR each of these together for each output

Then simplify the equations

Simplitying

» Use the algebraic rules etc...

* Look for common sub-equations and move to a
separate equation

 Aim is to use as few gates as possible
e Saves money

 Reduces propagation delay

Propagation delay is the time taken for a change in the inputs to be reflected in the output of a gate (74LS00 is around 18ns). As gates are combined
together the delays add together

Binary Decoder

Design a logic circuit than can convert a number
in binary to a series of discrete signals

One for each number
Look at 2-bit decoder

Two inputs, four outputs

Go draw output on paper

Multiplexer

Design a circuit that can combine two sets of two
inputs (a:,B1 and A,,B;) into a single set of two
outputs (a0,Bo)

Based on two selection wires s; and s

If s1is 1, then output is A1,B;

If s, is 1, then output is A,,B:

What if both s; and s, are 1...

Not necessarily a problem, depends on how the circuit is driven...

