
Computer Systems
Architecture

Steven R. Bagley

Introduction

• Programming is about telling the computer
what we want it to do	

• CSA is about getting ‘under-the-hood’	

• Understand how the computer does what
we tell it	

• How we can build one from the ground up

Introduction

• Overview of the subject	

• Going to have to think about topics that
branch out of Computer Science	

• Electronics, Maths, Logic, Physics…	

• Layers of abstraction tend to shield us for
the most part from this	

• But occasionally things leak through…

Very much my overview, what I’ve found interesting and important!
Helpful to know what’s going on when we hit the leaky bits of the abstraction

Other modules will pick up on some of these things in more detail
Spend a lot of time writing ARM code toward the end of the course

Encoding Information

Other modules will pick up on some of these things in more detail
Spend a lot of time writing ARM code toward the end of the course

Encoding Information

Digital Logic

Other modules will pick up on some of these things in more detail
Spend a lot of time writing ARM code toward the end of the course

Encoding Information

Digital Logic

Memory and Memory Management

Other modules will pick up on some of these things in more detail
Spend a lot of time writing ARM code toward the end of the course

Encoding Information

Digital Logic

Memory and Memory Management

State Machines

Other modules will pick up on some of these things in more detail
Spend a lot of time writing ARM code toward the end of the course

Encoding Information

Digital Logic

Memory and Memory Management

State Machines

CPU Design

Other modules will pick up on some of these things in more detail
Spend a lot of time writing ARM code toward the end of the course

Encoding Information

Digital Logic

Memory and Memory Management

State Machines

CPU Design

System Design

Other modules will pick up on some of these things in more detail
Spend a lot of time writing ARM code toward the end of the course

Encoding Information

Digital Logic

Memory and Memory Management

State Machines

CPU Design

System Design

Operating Systems

Other modules will pick up on some of these things in more detail
Spend a lot of time writing ARM code toward the end of the course

Encoding Information

Digital Logic

Memory and Memory Management

State Machines

CPU Design

System Design

Operating Systems

Instruction Set Architectures and Assembly Language

Other modules will pick up on some of these things in more detail
Spend a lot of time writing ARM code toward the end of the course

CSA Architecture

• Going to be based around two CPUs	

• ARM	

• Motorola 680x0 family	

• Although primary focus will be ARM

What’s inside a
computer?

Take the ST to bits…

Atari MegaSTe Block Diagram

256 KB

Real-Time

Clock

Keyboard

6850

Optional

Coproc

MIDI

6850

MC68881/2

Keyboard

MIDI
Jacks

Joystick

& Mouse

ROM

Atari
Blitter

Configuration
&

Controllers

Motorola
MC68000
8/16 MHz

Light Gun
& Paddles

Cache
RAM

Data Bus

Address Bus

TTSCU Interrupts

DACs
Filters
Mixer

Volume

FDC

8530

SCC

68901

MFP

uWire Control

Sound Data

Atari

TTSCU

DMA

PSG

2149

RS-232 Port A

RS-232 Port B

Interrupts In

LAN Port

Serial Port

MFP to

Parallel Printer Port
Floppy Drive Selects

& RS-232 Control

Ext. Floppy

VME Bus

Monotor

Stereo
Jacks

To
Audio

Modulator

Memory Data

1772

Address

Atari
GST

Memory
Control

Unit
(GSTMCU)

Atari

DMAC

Mux'ed

Atari
GST
Video
Shifter

Int. Floppy

Hard Disk

ACSI

SIMMs

Video to Monitor
uWire Control

RF Out

DMA Sound Data

Block diagram of an Atari ST variant
Note how everything is connected by three buses— the address bus, data bus, Also a clock to keep everything in sync…

Buses

• Address bus — Location of what we
wanting to access	

• Data bus — the data we are accessing	

• Control bus — signals saying what is
happening

Are we reading or writing?
Has an interrupt occured
Common across pretty much all computer systems

I
I
I
I
I
I
I
I
I
I
I
L

NOTE :
Used when the GT 4 0/42 is operated
as a termInal device

375
LIGHT
PEN

-,
I
I
I
I
I
I

PARALLEL
'-________ --'"'-___ P_O_R_T ___ J\. r

PER IPHERAL II
DEVICES

UNIBUS

SERIAL
PORT
(BC05 -C-2 5
CABLE)

L _____ -'

Figure 3 GT40/42 Graphic Display Terminal, Block Diagram

CIRCUIT BREAKER
RESET

KEYBOA RD
CABLE

Figure 4 GT40, Rear View

3

BC05-C-25
CO MMUNICATIONS
CABLE

CP'0327

DEC GT40 has a ‘unibus’ but if we look deeper we can see it is made up of an address, data and control bus…

3.1 GT40/42INTERFACES
Transferral of information between GT40/42 components and devices external to the basic system requires a means
for connecting or interfacing an extended system. The interface can be consid.ered to be the physical boundary
between the GT40/42 and attached units; it provides the communication link between the display terminal and
associated devices such as a host computer or additional memory units.

3.2 PARALLEL PORT
The GT40/42 possesses two interfaces. One, called the parallel port, uses conventional Unibus signals and
connections to transfer data in parallel format. The other interface is employed in the transfer of asynchronous data,
in a serial format, over a longer communications line. The two interfaces and their relation to the GT40/42 are
shown in Figure 7.

The parallel port is used typically to interface local high speed peripheral devices such as additional core memory,
disk storage units, etc. The parallel port is basically an extension of the PDP-11 family Unibus.

I
I BUS I ADDRESS REG.

+
I

PROCESSOR I BUS TIMING

I PROCESSOR I DATA PATHS •
BUS PRIORITY

CONTROL

PROCESSOR

KEY A-ADDRESS INFORMATION
C -CONTROL + TIMING SIGNALS
D - DATA INFORMATION
T- CONTROL TRANSFER SIGNALS
G - BUS GRANT SIGNALS

T

Vt-
tJ

UNIBUS

A
A
+
C BUFFER T

REGISTER

W ADDRESS

-,/ SELECTOR

MEMORY

MEMORY

Figure 7 Unibus Interface Block Diagram

3.2.1 Unibus Structure

.() ()

ADDRESS
SELECTOR DEVICE
INTERRUPT REGISTER
CONTROL

DEVICE
LOGIC

DEVICE

11-0017

The Unibus is a single common path that connects the processor, memory, and all peripherals. Addresses, data, and
control information are transmitted along the 56 lines of the bus. All 56 s.ignals and their functions are listed in
Table 4.

Every device on the Unibus employs the same form of communication; thus, the processor uses the same set of
signals to communicate with memory and with peripheral devices. Peripheral devices also communicate with the
processor, memory, or other peripheral devices via the same set of signals.

17

DEC GT40 has a ‘unibus’ but if we look deeper we can see it is made up of an address, data and control bus…

Buses

• All parts of the system communicate
through the buses	

• Set the address lines to specify what they
want	

• Read or write the data from the data lines	

• Set the control bits to specify what is
happening

Are we reading or writing etc.

Buses

• Works very much like a courier 	

• He has an address which he goes to	

• To collect a parcel	

• Or deliver a parcel

Buses

• Unlike a road though, only one thing can
use a bus at a time	

• Otherwise the signals will interfere	

• So there needs to be some pins to
arbitrate who has control of the bus	

• In a simple system, just the CPU has access
but for real systems it gets more complex

But DMA (Direct Memory Access) etc can mean that other things want access…

Buses

• Just as with a courier, it takes time for the
signals to travel down the bus	

• Electrical signals will travel at the speed of
light (roughly)	

• Which gives us an interesting issue…

Speed of light

• Computers are synchronized to a clock	

• Everything happens on the tick of the clock	

• There’s a period of time between each tick	

• How far can the signals travel in that time?	

• Can calculate it…

Speed of light
d = st

s is speed  
t is time!
or 10cm

Speed of light
d = st 1 

 clock freqt =

s is speed  
t is time!
or 10cm

Speed of light
d = st 1 

 clock freqt =

1 
 3x109t = s

s is speed  
t is time!
or 10cm

Speed of light
d = st 1 

 clock freqt =

s = 3x108 ms-1

1 
 3x109t = s

s is speed  
t is time!
or 10cm

Speed of light
d = st 1 

 clock freqt =

s = 3x108 ms-1

1 
 3x109t = s3 x 108 

 3 x 109d =

s is speed  
t is time!
or 10cm

Speed of light
d = st 1 

 clock freqt =

s = 3x108 ms-1

1 
 3x109t = s3 x 108 

 3 x 109d =

s is speed  
t is time!
or 10cm

Speed of light
d = st 1 

 clock freqt =

s = 3x108 ms-1

1 
 3x109t = s3 x 108 

 3 x 109d =

d = 10-1 m

s is speed  
t is time!
or 10cm

133.35mm

Oops, takes longer than one clock cycle to get from one of a DIMM to another!

Leaky abstractions

• In reality, memory doesn’t work that fast
anyway	

• But shows how things can leak through the
abstractions	

• While we think it might work one way, the
implementation can be different	

• Hidden behind the abstraction

Digital

• Only two states for the signal…	

• Either on or off	

• Take anything above a certain threshold to
mean on	

• And anything below to mean off

On and Off, 1 or 0, High or low, Asserted or not-asserted, true or false
All used to mean the same thing (in different contexts)

Digital

• Classic TTL signal levels (based on 5V
system)	

• Anything above 2V is on	

• Anything below 0.8V is off	

• There’s a no-man’s land between the two
which is undefined…

Digital

• But how do we represent a number with
just two states?	

• Answer — binary numbers…

Numbers

• Various symbols have been used over the
ages to represent numbers	

• Roman numerals	

• Arabic numbers (as we use today)	

• All are an encoding for the underlying
quantity

Numbers

• Based around ten because we have ten
fingers	

• But we also have counting systems using
other bases	

• Time, for example…	

• Computers just use a different encoding
using two symbols

Because we only have two states,on or of, 0 and 1, high or low. True or false.

Decimal counting

Decimal counting

8

1

9

2

Decimal counting

8

1

9

2

8 Thousands

1 hundred

9 Tens

2

Decimal counting

8

1

9

2

8 Thousands

1 hundred

9 Tens

2

8000

100

90

2

8192

Decimal counting

8

1

9

2

8 Thousands

1 hundred

9 Tens

2

8000

100

90

2

8192

10

10

10

10

Binary Counting

• Works the same as decimal counting	

• Except we use powers of 2 rather than 10	

• So we have units, 2s, 4s, 8s, 16s etc…

Decimal counting

Easy to convert from binary to decimal -- just add up which powers of two have

Decimal counting

1

0

1

1

Easy to convert from binary to decimal -- just add up which powers of two have

Decimal counting

1

0

1

1

1Eight

0 Fours

1 Two

1 unit

Easy to convert from binary to decimal -- just add up which powers of two have

Decimal counting

1

0

1

1

1Eight

0 Fours

1 Two

1 unit

8

0

2

1

11

Easy to convert from binary to decimal -- just add up which powers of two have

Decimal counting

1

0

1

1

1Eight

0 Fours

1 Two

1 unit

8

0

2

1

11

2

2

2

2

Easy to convert from binary to decimal -- just add up which powers of two have

Decimal to Binary

• Several ways to convert from decimal into
binary	

• Could just test each power of two against
the number and see if the number is bigger
(if it is then subtract that number from it
and repeat)	

• Or we can do it by repeated division…

Go demo on the white board…

Binary Numbers

• Often written out with leading zeros	

• Up to a certain number of bits — usually a
multiple of eight	

• So 42 is written as 00101010, to 101010	

• Might also see it written as 0b00101010 to
signify it is binary…

bits = binary digit

Octal and Hexadecimal

• Binary numbers get long and unwieldy	

• Try scribbling 64bits down on a piece of
paper…	

• Tend to use octal or hexadecimal number
systems instead for ease

Octal and Hexadecimal

• Octal is a base-8 system	

• Hexadecimal is base-16	

• Crucially, both of these are powers of two	

• So each octal digit equates to three bits	

• Each hex digit equates to four bits very
easy to convert

Go show how it works on the white board

Binary Hexadecimal Octal Decimal

0000 0 0 0

0001 1 1 1

0010 2 2 2

0011 3 3 3

0100 4 4 4

0101 5 5 5

0110 6 6 6

0111 7 7 7

1000 8 10 8

1001 9 11 9

1010 A 12 10

1011 B 13 11

1100 C 14 12

1101 D 15 13

1110 E 16 14

1111 F 17 15

Hex binary octal table
Note how hex uses letters to signify numbers greater than 9

Binary to Octal (or Hex)

• Start from the right hand side	

• Group together three (or four for hex) bits	

• Convert to octal or hex digit	

• Repeat for the next three (four) bits	

• And so on…	

• And vice versa…

This approach doesn’t work for decimal

