
G51CSA Handout:
Addressing the System

Steven R. Bagley

Introduction

In lecture 23, we looked at how the CPU talks to the rest of the system over its address and data
buses. In particular, we saw how all the chips in a system (CPU, RAM, ROM etc.) are connected
to the same data and address bus and that the system uses standard digital logic to decode the
address bus to enable (or select ) the correct chip for a specific address. We built up the logic cir-
cuits using the nand2tetris simulator, but in this handout we will use written logic equations.

The important thing to remember is that the address bus is simply a set of electric signals that
contain the binary number representing the address to be accessed. In these examples, we are
using the 6502 CPU which has a 16-bit address bus (with signals, or lines as they are known,
labelled A15 to A0— with A0 being the LSB). Although, the lines are carrying a number, we can
treat them individually as just another logic value and combine them together using logic gates.
Therefore, all we need to do is to find a logic circuit (or equation) that combines some or all of
the address lines together such that the output is true whenever the address refers to a specific
chip. However, it is also beneficial if we can keep the circuit as simple as possible (i.e. using the
least amount of logic) so we sometimes allow things to be additional addresses. This is fine provid-
ing that everything is uniquely addressable.

Conventions

In this handout, we will use the following conventions to refer to AND, OR and NOT gates:

� AND —A . B

� OR —A + B

� NOT—A
��

1. BBC Micro

This system we looked at in the lecture was the venerable BBC Micro. The address space for the
‘Beeb’ is as follows (we’ll consider I/O in a second):
��������������������������������������������
Address Range (hex) Contains Select Signal����������������������������������������������������������������������������������������
0X0000—0x7FFF RAM RAMCS
0x8000—0xBFFF User ROM UROMCS
0xC000—0xFFFF OS ROM OSROMCS����������������������������������������������

�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

The trick is to spot what address lines stay the same, in the binary version of the address, for any
valid address in a paritcular range. Often we can spot this by looking at a few choice addresses —
the first, last, and those one before and after the last are good choices to start. In this example, for
RAM we get:

First RAM: 0000 0000 0000 0000
Last RAM: 0111 1111 1111 1111

First not RAM: 1000 0000 0000 0000

All the valid RAM addresses have A15, the MSB (most significant bit), set to zero and all other
addresses have it set to one. So for the RAMCS signal to select the RAM chip, we just need to
invert A15 using a NOT gate, e.g.



- 2 -

RAMCS=A 15
����

It also follows then that both UROMCS and OSROMCS must both require A15 to be set to one.

We can now start to work out a logic equation for UROMCS in the same manner. However,
we can make things easier for ourselves by spotting that it’s actually only the top nibble (4-bits are
called a nibble, since it’s smaller than a byte…) that matters. This isn’t always the case, sometimes
it’s the top byte, or even the whole address bus. In this case, it is nice since each hex digit repre-
sents one nibble.

Therefore, for UROMCS, we need to develop a circuit that is true when the top nibble
conains either 0x8, 0x9, 0xA, or 0xB and is false, when it contains any other value. The easiest
starting point for this is to look at the binary versions:

1000
1001
1010
1011

We have two options here, we could just match each of the binary patterns that are valid and or
them together, like this:

UROMCS=A 15.A 14
����

.A 13
����

.A 12
����

+ A 15.A 14
����

.A 13
����

.A 12 + A 15.A 14
����

.A 13.A 12
����

+ A 15.A 14
����

.A 13.A 12

And then use the rules of boolean algebra to simplify the equation (in the same way, we can sim-
plify mathematics). Or we can spot, that each address starts 10xx. Either way, we can reduce the
expression to the much simpler:

UROMCS=A 15.A 14
����

Exactly the same procedure, can be applied for OSROMCS and you’ll find (the steps are left as an
exercise to the reader) that the result is:

OSROMCS=A 15.A 14

1.1. I/O

As it stands, there’s no space left to map I/O devices into the address space. The BBC Micro,
actually maps three I/O ranges (known, bizarrely, as FRED, JIM and SHEILA!) into the follow-
ing addresses:
������������������������������������������
Address Range (hex) Contains Select Signal������������������������������������������������������������������������������������
0XFC00—0xFCFF FRED FREDCS
0xFD00—0xFDFF JIM JIMCS
0xFE00—0xFEFF SHEIA SHEILACS��������������������������������������������

�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

Developing select signals for each range is straight-forward, although in this case we need to con-
sider 8-bits worth of the address bus. So for FREDCS, we need to match 0xFC on the top eight
address lines, like this:

FREDCS=A 15.A 14.A 13.A 12.A 11.A 10.A 9
���

.A 8
���

For JIMCS:

JIMCS=A 15.A 14.A 13.A 12.A 11.A 10.A 9
���

.A 8

And SHEILACS:

SHEILACS=A 15.A 14.A 13.A 12.A 11.A 10.A 9.A 8
���

But this leaves, a problem some addresses are now matched by both OSROMCS and one of the
I/O lines — since A15 and A14 will be true for any I/O address in FRED, JIM or SHEILA. The
solution is to redefine OSROMCS so that it is not true when it is an I/O area as well. We can do



- 3 -

this by anding it with the inverted I/O select line:

OSROMCS=A 15.A 14.FREDCS
��������

.JIMCS
������

.SHEILACS
����������

Alternatively, this can be written as:

OSROMCS=A 15.A 14.(FREDCS + JIMCS + SHEILACS)
��������������������������������

Both are equivalent due to De Morgan’s rule, which one is implemented will often depend on
which logic gates are free in the circuit. In either case, the ROM chip will only be selected if the
address is in the ROM range, and is not in an I/O range.

2. Atari VCS

The Atari VCS was an early games console that also used a 6502 CPU. It’s address space was
mapped as follows:
������������������������������������������������
Address Range (hex) Contains Select Signal������������������������������������������������������������������������������������������������
0X0000—0x002C VIDEO I/O VIDCS
0x0100—0x01FF RAM RAMCS
0x2010—0x2012 I/O IOCS
0xF000—0xFFFF Cartridge ROM ROMCS�������������������������������������������������

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

This address space is much more spartan, but the same rules as before can be applied. However,
we can vastly reduce the logic required if allow ‘shadows’ or ‘mirrror’ to be present. This is fine as
long as everything is uniquely decodeable. It is (again) left as an exercise to the reader to work out
the exact derivations, but it is possible to decode the address space using the following equations:

VIDCS=A 15
����

.A 14
����

.A 13
����

.A 12
����

.A 11
����

.A 10
����

.A 9
���

.A 8
���

RAMCS=A 15
����

.A 14
����

.A 13
����

.A 12
����

.A 11
����

.A 10
����

.A 9
���

.A 8
IOCS=A 15

����
.A 14
����

.A 13.A 12
����

ROMCS=A 15.A 14.A 13.A 12

However, it is possible to use the rules of Boolean algebra to simplify this even further by factor-
ing out common sub-equations and reusing them.


